Analysis of the Formation Conditions for Large Area Epitaxial Graphene on SiC Substrates

نویسندگان

  • Rositsa Yakimova
  • Chariya Virojanadara
  • Daniela Gogova
  • Mikael Syväjärvi
  • D. Siche
  • Krister Larsson
  • Leif Johansson
  • R. Yakimova
  • C. Virojanadara
  • D. Gogova
  • M. Syväjärvi
  • K. Larsson
  • L. I. Johansson
چکیده

We are aiming at understanding graphene formation mechanism on different SiC polytypes (6H, 4H and 3C) and orientations with the ultimate goal to fabricate large area graphene (up to 2 inch) with controlled number of mono layers and spatial uniformity. To reach the objectives we are using high-temperature atmospheric pressure sublimation process in an inductively heated furnace. The epitaxial graphene is characterized by ARPES, LEEM and Raman spectroscopy. Theoretical studies are employed to get better insight of graphene patterns and stability. Reproducible results of single layer graphene on the Si-face of 6H and 4H-SiC polytypes have been attained. It is demonstrated that thickness uniformity of graphene is very sensitive to the substrate miscut.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of structural and electronic properties of epitaxial graphene on 3C–SiC(100)/Si(100) substrates

Graphene has been intensively studied in recent years in order to take advantage of its unique properties. Its synthesis on SiC substrates by solid-state graphitization appears a suitable option for graphene-based electronics. However, before developing devices based on epitaxial graphene, it is desirable to understand and finely control the synthesis of material with the most promising propert...

متن کامل

Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition

The Si(0001) face and C(000-1) face dependences on growth pressure of epitaxial graphene (EG) grown on 4H-SiC substrates by ethene chemical vapor deposition (CVD) was studied using atomic force microscopy (AFM) and micro-Raman spectroscopy (μ-Raman). AFM revealed that EGs on Si-faced substrates had clear stepped morphologies due to surface step bunching. However, This EG formation did not occur...

متن کامل

Multidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates

Using high-temperature annealing conditions with a graphite cap covering the C-face of, both, on axis and 8° off-axis 4H-SiC samples, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. On the best samples, we find...

متن کامل

Exploring graphene formation on the C-terminated face of SiC by structural, chemical and electrical methods

The properties of epitaxial graphene on the C-face of SiC are investigated using comprehensive structural, chemical and electrical analyses. By matching similar nanoscale features on the surface potential and Raman spectroscopy maps, individual domains have been assigned to graphene patches of 1-5 monolayers thick, as well as bare SiC substrate. Furthermore, these studies revealed that the grow...

متن کامل

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012